SQUARE ROOTS \& PERFECT SQUARES
To understand square roots, first let's take a look at squares.
How to Square a Number: Just multiply it by itself.

Squares firom 1^{2} to 12^{2}
 PERFECT SQUARES

1 Squared $=1^{2}=1 \times 1=1$
2 Squared $=2^{2}=2 \times 2=4$
3 Squared $=3^{2}=3 \times 3=9$
4 Squared $=4^{2}=4 \times 4=16$
5 Squared $=5^{2}=5 \times 5=25$
6 Squared $=6^{2}=6 \times 6=36$
7 Squared $=7^{2}=7 \times 7=49$
8 Squared $=8^{2}=8 \times 8=64$
9 Squared $=9^{2}=9 \times 9=81$
10 Squared $=1^{2}=10 \times 10=100$
11 Squared $=1^{2}=11 \times 11=121$
12 Squared $=1^{2}=12 \times 12=144$

\mathbf{X}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{1} \rightarrow$	(1)	4	3	4	5	6	7	8	9	10	11	12
$\mathbf{2}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{5}$	8	10	12	14	16	18	20	22	24
$\mathbf{3}$	$\mathbf{3}$	5	9	12	15	18	21	24	27	30	33	36
$\mathbf{4}$	4	8	12	16	20	24	28	32	36	40	44	48
$\mathbf{5}$	5	10	15	20	25	30	35	40	45	50	55	60
$\mathbf{6}$	6	12	18	24	30	36	42	48	54	60	66	72
$\mathbf{7}$	7	14	21	28	35	42	49	56	63	70	77	84
$\mathbf{8}$	8	16	24	32	40	48	56	64	72	80	88	96
$\mathbf{9}$	9	18	27	36	45	54	63	72	81	90	99	108
$\mathbf{1 0}$	10	20	30	40	50	60	70	80	90	100	110	120
$\mathbf{1 1}$	11	22	33	44	55	66	77	88	99	118	121	132
$\mathbf{1 2}$	12	24	36	48	60	72	84	96	108	120	132	144

Square Roots:

A square root goes the other way:
3×3

3 squared is 9 , so a square root of 9 is 3
A square root of a number is a value that can be multiplied by itself to give the original number.
A square root of $\mathbf{9}$ is $\mathbf{3}$, because when $\mathbf{3}$ is multiplied by itself we get 9 .
It is like asking "what can we multiply by itself to get this?"

The Square Root Symbol

$\sqrt{\text { This is the special symbol that means "square root". It is called the radical. }}$
To Help You Remember: Think of the root of a tree.

