Maximizing Area for a Given Perimeter

Example 1: Farmer Pooley wants to buy some pigs. He needs to build a fenced area for the pigs and only has 40 m of fencing. He wants to build a rectangular pen that will give the pigs the maximum amount of space. What dimensions should the pen be?

Solution:

Using the grid paper below, draw as many rectangles as you can that only use 40 m of fencing.

											-						-			,	-		
																	-						

For each drawing, fill in the chart below:

Design Number	Perimeter (m)	Length (m)	Width (m)	Area (m²)

Conclusions:

What is the greatest area for the pig pen that has a perimeter of 40 m ?
What are the dimensions of the rectangle with the greatest area?
What shape is the pig pen? \qquad
Formula: Dimensions of the shape with Maximum Area given a set Perimeter:
Length = \qquad
Width = \qquad

Maximizing Area for a Given Perimeter - 3 sided

Example 2: Farmer Pooley wants to fence off a rectangular area beside the chicken coop. He only needs to put up 3 sides of fencing since the chicken coop will act as the fourth side. He has 20 m of fencing and wants to maximize the space for the chickens. What dimensions should the pen be?

Solution:

Using the grid paper below, draw as many rectangles as you can that only use 20 m of fencing.

For each drawing, fill in the chart below:

Design Number	Perimeter (m)	Length (m)	Width (m)	Area (m ${ }^{\mathbf{2}}$)

Conclusions:

What is the greatest area for the 3 sided pen that has a perimeter of 20 m ?
What are the dimensions of the rectangle with the greatest area? \qquad
What shape is the chicken pen?
Formula: Dimensions of the shape with Maximum Area given a set 3 sided Perimeter:
Length =
Width = \qquad

Minimizing Perimeter for a Given Area

Example 3: Farmer Pooley is running out of money. He needs to build a fenced area for his pigs and wants to spend as little as possible on fencing. He wants to build a rectangular pen with an area of $16 \mathrm{~m}^{2}$. What dimensions should the pen be?

Solution:

Using the grid paper below, draw as many rectangles as you can that have an area of $16 \mathrm{~m}^{2}$.

			-	\square	-	-	-	-	"	-									-	\cdots			\square			
			-	-			-																			

For each drawing, fill in the chart below:

Design Number	Area (\mathbf{m}^{2})	Length (\mathbf{m})	Width (\mathbf{m})	Perimeter (\mathbf{m})

Conclusions:

What is the least amount of fencing needed for a $16 \mathrm{~m}^{2}$ pen? \qquad
What are the dimensions of the rectangle with the least perimeter? \qquad
What shape is the pig pen?

Formula: Dimensions of the shape with Minimum Perimeter given a set Area:

Length = \qquad
Width =

Minimizing Perimeter for a Given Area - 3 sided

Example 4: Farmer Pooley wants to fence off a rectangular area beside the chicken coop. He only needs to put up 3 sides of fencing since the chicken coop will act as the fourth side. He wants the pen to be $18 \mathrm{~m}^{2}$. What dimensions should the pen be in order to minimize fencing costs?

Solution:

Using the grid paper below, draw as many rectangles as you can that only use $18 \mathrm{~m}^{2}$ of fencing.

For each drawing, fill in the chart below:

Design Number	Area (m${ }^{\mathbf{2}}$)	Length (m)	Width (m)	Perimeter (m)

Conclusions:

What is the least amount of fencing for the 3 sided pen that has an area of $18 \mathrm{~m}^{2}$? \qquad
What are the dimensions of the rectangle with the least perimeter? \qquad
What shape is the chicken pen? \qquad
Formula: Dimensions of the shape with Minimum 3 sided Perimeter given a set Area:
Length = \qquad
Width =

