
Calculate	the slope using $\frac{rise}{run}$	of each line.	y		···· · · · · · · · · · · · · · · · · ·	- y 5	
Line #1	Tun	Line #2	line #1		line #3		line #4
Line #3		Line #4		5			5
What can	you conclude about th	ne slope of ho	rizontal lines?				
What can	you conclude about th	he slope of ve	rtical lines?				
	the slope of each line	run			.line #6		
Line #6	Line #	7			0 -5 0		×

Investigating Slopes

What type of relationship do you see between slope 8&9 and slope 10 & 11?

Lines that are perpendicular have _______ slopes.

When you multiply slopes of perpendicular lines together, the result is always _____