22 Is It a Line?
Determine whether each of the relations in the chart below is linear or non-linear.
Justify your answers. You may use the grid if you wish.

It is linear because it is in the form of
$y=m x+b$ which
is the form of
a_{n} equation of a line

10 Folding Time

A piece of paper is folded in half, which results in two layers of paper. Then the paper is folded in half again to make four layers, and so on.

The number of layers and the number of folds are recorded in the chart.

Determine whether this relationship is linear or non-linear.

Circle one: Linear Non-linear Justify your answer.

You have the option of using the grid if you wish.

1. the first differences are not the same
2. the graph does not have. a constant rate nor

Number of folds
does it create a straight line

10 Fabric Purchase
Two companies sell fabric online. The total cost, C, in dollars, for n metres of fabric for each company is given below.

- Fabric Fun: $C=4.25 n+3.00$
- Sew-a-Lot: $C=6.50 n$

Complete the chart below by determining the initial value, rate of change and type of variation for the relationship for each company.

Justify the type of variation you have selected.

2003-2004

1.5 In Hot Water

Demetrius's science class is performing an experiment.
Demetrius fills a beaker with room temperature water.
He slowly heats the water over a source of constant heat and records the water temperature at different times in the table below.

Time elapsed, \boldsymbol{x} (min)	Water temperature, \boldsymbol{y} $\left({ }^{\circ} \mathrm{C}\right)$	First differences
2	30	13
4	43	11
6	54	12
8	66	11
10	77	

a) i) Complete the first differences column in the table of values above.
ii) Is the relationship between the water temperature and the time elapsed linear or non-linear?

Check one: linear or non-linear
Give reasons for your answer.
first differences are not the same
b) Graph the data from question a) on the grid below.

Draw a line of best fit.
Water Temperature vs. Time Elapsed

c) Water boils when it reaches a temperature of $\mathbf{1 0 0}{ }^{\circ} \mathbf{C}$.

Predict how long it will take the water in Demetrius's beaker to boil. Justify your answer. At $100^{\circ} \mathrm{C}$, the time elapsed is 14 minutes
d) Suppose that Demetrius repeats the above experiment but fills his beaker with cold water taken from the refrigerator instead of room temperature water.

Compare the line of best fit for the data from this new experiment with the line in question b).
The new line for cold water will have the same slope (be parallel to) the first line, but will be below the first line because the initial temperature (vertical intercept)

