1. Jaime has a drinking glass in the shape of a cylinder. The radius of the base of the glass is 5 cm , and the height is 12 cm .
a) If the glass were full of water, what would be the volume of water in the glass?
(Note: $V=$ $\qquad$ )
b) If the height of the water in the glass were 7 cm , what would be the volume of water in the glass?
c) Complete the following table.

| Height of Water (cm) | Volume of Water $\left(\mathrm{cm}^{3}\right)$ | First Difference |
| :---: | :--- | :--- |
| 2 |  |  |
| 4 |  |  |
| 6 |  |  |
| 8 |  |  |
| 10 |  |  |

d) Based on the chart above, would you say that the data is linear or non-linear? Explain your answer.
e) When the graph is drawn, should the points be connected or not? Why is this choice most appropriate for this data?
f) Draw a fully labelled graph of the height of water versus the volume of water in Jaime's glass.
2. Calculate the surface area and the volume of the following:
a) Rectangular prism of height 3 m , width 12 m and length 10 m .
b) Cylinder of height 8 cm , diameter of base 12 cm .
c) Cone of height 16 m and radius of the base 5 m .
3. If the height of a rectangular prism is 10 cm , the width is 22 cm and the volume is $380 \mathrm{~cm}^{3}$, find the length, rounded to one decimal place.
4. If the height of a cylinder with volume $58 \mathrm{~m}^{3}$ is 8 m , find the radius to one decimal place.

## Answers:

1. a) $942.48 \mathrm{~cm}^{3}$
b) $549.78 \mathrm{~cm}^{3}$
2. a) $360 \mathrm{~m}^{3}$
b) $904.78 \mathrm{~cm}^{3}$
c) $418.88 \mathrm{~cm}^{3}$
3. 1.7 cm
4. 1.52 m
